图书简介
This book constitutes the refereed proceedings of the 4th International Conference on Dynamic Data Driven Applications Systems, DDDAS 2022, which took place in Cambridge, MA, USA, during October 6–10, 2022.The 31 regular papers in the main track and 5 regular papers from the Wildfires panel, as well as one workshop paper, were carefully reviewed and selected for inclusion in the book. They were organized in following topical sections: DDAS2022 Main-Track Plenary Presentations; Keynotes; DDDAS2022 Main-Track: Wildfires Panel; Workshop on Climate, Life, Earth, Planets.
DDDAS2022 Main-Track Plenary Presentations.- Aerospace I.- Generalized multifidelity active learning for Gaussian-process-based reliability analysis.- Essential Properties of a Multimodal Hypersonic Object Detection and Tracking System.- Aerospace II.- Dynamic Airspace Control via Spatial Network Morphing.- Towards the formal verification of data-driven flight awareness: Leveraging the Cramér-Rao lower bound of stochastic functional time series models.- Coupled Sensor Configuration and Path-Planning in a Multimodal Threat Field.- Space Systems.- Probabilistic Admissible Region Based Track Initialization.- Radar cross-section modeling of space debris.- High Resolution Imaging Satellite Constellation.- Network Systems.- Reachability Analysis to Track Non-cooperative Satellite in Cislunar Regime.- Physics-Aware Machine Learning for Dynamic, Data-Driven Radar Target Recognition.- DDDAS for Optimized Design and Management of Wireless Cellular Networks.- Systems Support Methods.- DDDAS-based Learning for Edge Computing at 5G and Beyond 5G.- Monitoring and Secure Communications for Small Modular Reactors.- Data Augmentation of High-Rate Dynamic Testing via a Physics-Informed GAN Approach.- Unsupervised Wave Physics-Informed Representation Learning for Guided Wavefield Reconstruction.- Passive Radio Frequency-based 3D Indoor Positioning System via Ensemble Learning.- Deep Learning - I.- Deep Learning Approach for Data and Computing Efficient Situational Assessment and Awareness in Human Assistance and Disaster Response and Damage Assessment Applications.- SpecAL: Towards Active Learning for Semantic Segmentation of Hyperspectral Imagery.- Multimodal IR and RF based sensor system for real-time human target detection, identification, and Geolocation.- Deep Learning - II.- Learning Interacting Dynamic Systems with Neural Ordinary Differential Equations.- Relational Active Feature Elicitation for DDDAS.- Explainable Human-in-the-loop Dynamic Data-Driven Digital Twins.- Tracking.- Transmission Censoring and Information Fusion for Communication-Efficient Distributed Nonlinear Filtering.- Distributed Estimation of the Pelagic Scattering Layer using a Buoyancy Controlled Robotic System.- Towards a data-driven bilinear Koopman operator for controlled nonlinear systems and sensitivity analysis.- Security.- Tracking Dynamic Gaussian Density with a Theoretically Optimal Sliding Window Approach.- Dynamic Data-Driven Digital Twins for Blockchain Systems.- Adversarial Forecasting through Adversarial Risk Analysis within a DDDAS Framework.- Distributed Systems.- Power Grid Resilience: Data Gaps for Data-Driven Disruption Analysis.- Attack-resilient Cyber-physical System State Estimation for Smart Grid Digital Twin Design.- Applying DDDAS Principles for Realizing Optimized and Robust Deep Learning Models at the Edge.- Keynotes.- Keynotes Overview.- DDDAS for Systems Analytics in Applied Mechanics.- Computing for Emerging Aerospace Autonomous Vehicles.- From genomics to therapeutics: Single-cell dissection and manipulation of disease circuitry.- Data Augmentation to Improve Adversarial Robustness of AI-Based Network Security Monitoring.- Improving Predictive Models for Environmental Monitoring using Distributed Spacecraft Autonomy.- Towards Continual Unsupervised Data Driven Adaptive Learning.- DDDAS2022 Main-Track: Wildfires Panel.- Wildfires Panel Overview.- Using Dynamic Data Driven Cyberinfrastructure for Next Generation Disaster Intelligence.- Simulating large wildland
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐