图书简介
Advances in Smart Nanomaterials and their Applications brings together the latest advances and novel methods in the preparation of smart nanomaterials for cutting-edge applications. The book covers fundamental concepts of nanomaterials, including fabrication methods, processing, application areas, specific applications of smart nanomaterials across a range of areas, such as biomedicine, pharmaceuticals, food science and packaging, sensing, cosmetics and dermatology, gas, oil, energy, wastewater and environment, textiles, agriculture, and forestry sectors. In each case, possible challenges, recent trends, and potential future developments are addressed in detail. The book also discusses various considerations for the utilization of smart nanomaterials, including environmental safety and legal requirements. The book is suitable for graduate students as a textbook and simultaneously be useful for both novices and experienced scientists or researchers, medical biologists, nanobiotechnologists, nanoengineers, agricultural scientists, and general biologists as a reference book as well as inspires some industrialists and policy makers involved in the investigation of smart nanomaterials.
List of contributors xv About the editors xix Preface xxi Key features xxiii 1. Nanomaterials: introduction, synthesis, characterization, and applications 1 Tadege Belay, Limenew Abate Worku, Rakesh Kumar Bachheti, Archana Bachheti and Azamal Husen Abbreviations 1 1.1 Introduction 2 1.2 Classification of nanomaterials 3 1.2.1 Carbon-based nanoparticles 3 1.3 Metal/metal oxide nanoparticles 5 1.3.1 Ceramics nanoparticles 6 1.3.2 Semiconductor nanoparticles 7 1.3.3 Polymeric nanoparticles 7 1.3.4 Lipid-based nanoparticles 7 1.4 Properties of nanomaterials 7 1.5 Synthesis of nanoparticles 8 1.6 Factors affecting the synthesis of nanomaterials 9 1.6.1 Particular method 9 1.6.2 pH 9 1.6.3 Temperature 9 1.6.4 Pressure 12 1.6.5 Time 12 1.6.6 Preparation cost 12 1.6.7 Particle size and shape 12 1.6.8 Pore size 12 1.6.9 Environment 13 1.6.10 Proximity 13 1.6.11 Other factors 13 1.7 Characterization techniques 13 1.8 Applications of nanomaterials 15 1.9 Conclusion 16 References 17 2. Smart nanomaterials in the medical industry 23 Ankush D. Sontakke, Deepti, Niladri Shekhar Samanta and Mihir K. Purkait 2.1 Introduction 23 2.2 Classification of smart nanomaterials 26 2.2.1 Physical responsive nanomaterials 27 2.2.2 Chemical responsive nanomaterials 29 2.2.3 Biological responsive nanomaterials 31 2.3 Significance and adaptability of smart nanomaterials for the medical industry 32 2.4 Smart nanomaterials and their potential use in the medical industry 33 2.4.1 Carbon-based smart nanomaterials 33 2.4.2 Inorganic smart nanomaterials 35 2.4.3 Polymeric smart nanomaterials 37 2.5 Applications of smart nanomaterials in the medical industry 38 2.5.1 Multifunctional drug delivery system 38 2.5.2 Tissue engineering 39 2.5.3 Biosensing and bioimaging 40 2.5.4 Photodynamic therapy 41 2.5.5 Magnetic resonance imaging 42 2.5.6 Toxicological aspects of smart nanomaterials 43 2.6 Challenges and future prospective 44 2.7 Conclusion 44 References 45 3. Nanomedicine-lipiodol formulations for transcatheter arterial chemoembolization 51 Xing Gao, En Ren, Chengchao Chu, Yun Zeng and Gang Liu 3.1 Introduction 51 3.1.1 Hepatocellular carcinoma 51 3.1.2 Transcatheter arterial chemoembolization 53 3.1.3 Lipiodol 53 3.1.4 Nanomedicine 54 3.2 Nanomedicine-lipiodol formulations 55 3.2.1 Coarse emulsions 55 3.2.2 Pickering emulsion 56 3.2.3 Homogeneous formulation 56 3.3 Functions and applications of nanomedicine-lipiodol formulations 57 3.3.1 Drug delivery 57 3.3.2 Imaging 58 3.3.3 Precise surgical navigation 62 3.3.4 Combined therapy 64 3.4 Conclusions and perspectives 67 Acknowledgments 68 References 68 4. Role of nanotechnology in cancer therapies: recent advances, current issues, and approaches 73 Madhusudhan Alle and Md. Adnan 4.1 Introduction 73 4.2 Photothermal therapy 77 4.3 Photodynamic therapy 78 4.4 Sonodynamic therapy 79 4.4.1 Mechanism of sonodynamic therapy 80 4.4.2 Sonosensitizers 81 4.5 Starvation therapy 82 4.5.1 Glucose oxidase-mediated cancer starvation therapy 84 4.5.2 Glucose oxidase-based cancer monotherapy 84 4.5.3 Synergistic starvation/chemotherapy 84 4.5.4 Glucose oxidase-inducing cancer starvation and hypoxia-activated chemotherapy 85 4.6 Cancer immunotherapy 85 4.6.1 Cancer-immunity cycle 86 4.6.2 Nanomaterials cancer immunotherapy 87 4.7 Conclusion 88 References 88 5. Lipid-based cubosome nanoparticle mediated efficient and controlled vesicular drug delivery for cancer therapy 97 Rittick Mondal, Harshita Shand, Anoop Kumar, Hanen Sellami, Suvankar Ghorai, Amit Kumar Mandal and Azamal Husen 5.1 Introduction 97 5.2 Structure and advantages of cubosome nanoparticles 98 5.3 Synthesis of cubosome nanoparticles 98 5.3.1 Topdown techniques 99 5.3.2 Bottomup techniques 100 5.4 Characterization of cubosome nanoparticles 100 5.5 Application of cubosome nanoparticles as an anticancer drug delivery carrier 101 5.6 The future aspect of cubosome nanoparticles 103 5.7 Conclusion 104 References 105 6. Smart nanomaterials and control of biofilms 109 Ajay Kumar Chauhan, Surendra Pratap Singh, Bhoomika Yadav, Samvedna Khatri and Azamal Husen 6.1 Introduction 109 6.2 Biofilm 110 6.2.1 Structure and development of biofilms 111 6.2.2 Function of biofilms 112 6.3 Various types of biofilms 113 6.3.1 Bacterial 113 6.3.2 Mycobacteria 113 6.3.3 Fungi 113 6.3.4 Algae 116 6.4 Various techniques to control biofilm 116 6.4.1 Ultraviolet irradiation 116 6.4.2 Chlorine 116 6.4.3 Hydrogen peroxide 117 6.4.4 Nitrous oxide 117 6.5 Barriers to conventional treatment methods 117 6.5.1 Antibiotic resistance 117 6.5.2 Microenvironment of biofilm 118 6.5.3 Control of biofilm using nanoparticles 118 6.6 Various types of nanomaterials used for biofilm control 118 6.6.1 Metallic nanomaterials 119 6.6.2 Nonmetallic inorganic nanomaterials 120 6.6.3 Lipid-based nanomaterials 120 6.6.4 Polymeric nanomaterials 121 6.7 Conclusion and prospects 121 References 122 7. Antimicrobial activities of nanomaterials 127 Limenew Abate Worku, Deepti, Yenework Nigussie, Archana Bachheti, Rakesh Kumar Bachheti and Azamal Husen Abbreviations 127 7.1 Introduction 127 7.2 Microbial resistance to nanoparticles 128 7.3 The effects of nanoparticles on microbial resistance 129 7.4 Antibacterial mechanisms of nanoparticles 129 7.5 Antimicrobial activities of various nanoparticles 131 7.5.1 Silver nanoparticle 131 7.5.2 Gold nanoparticles metal-oxide nanoparticles 132 7.5.3 Biopolymers 136 7.5.4 Natural essential oil 138 7.6 Antibacterial application of nanoparticles 140 7.6.1 Food packaging 140 7.6.2 Wound dressing application 141 7.7 Conclusion 142 References 142 8. Management of infectious disease and biotoxin elimination using nanomaterials 149 Ghazala Sultan, Inamul Hasan Madar, Syeda Mahvish Zahra, Mahpara Safdar, Umar Farooq Alahmad, Mahamuda Begum, Ramachandran Chelliah and Deog-Hawn Oh 8.1 Introduction 149 8.1.1 Nanomaterials and nanotechnology 149 8.1.2 Applications of nanotechnology 150 8.1.3 Challenges in nanotechnology 152 8.2 Management of infectious disease based on nanotechnology 153 8.2.1 Identification of pathogens 153 8.2.2 Gold nanoparticles 153 8.2.3 Silver nanoparticles 154 8.2.4 Quantum dots 154 8.2.5 Fluorescent polymeric nanoparticle 154 8.3 Bacterial disinfection and drug resistance bacteria controlled by nanotechnology 154 8.4 Treatment of infectious diseases based on nanotechnology 162 8.4.1 Nanomaterials as a treatment tool 162 8.4.2 Antimicrobial nanomaterials in treatment 163 8.4.3 Nanotherapies for viral infections 165 8.5 Biotoxin elimination using nanomaterials 166 8.6 Silica nanoreactor polyethylene glycol for nanodetoxification 167 8.6.1 Mycotoxin eliminations using nanotechnology 167 8.7 Limitations of available nanodetoxification methods 167 References 168 9. Nanomaterials and their application in microbiology disciplines 175 Arvind Arya, Pankaj Kumar Tyagi, Sandeep Kumar and Azamal Husen 9.1 Introduction 175 9.2 Application of nanomaterials in water microbiology 176 9.2.1 Use of nanoparticles in water disinfection 177 9.3 Application of nanomaterials in food microbiology 178 9.3.1 Roles of nanotechnology in food adulteration analysis 180 9.3.2 Food safety analysis using nanomaterial and devices 182 9.3.3 Detection of food pathogens using nanosensors 183 9.3.4 Application of nanosensors in the detection of toxins 183 9.3.5 Application of nanosensors in the detection of chemicals and pesticides in food 183 9.3.6 Nanomaterials for protection from allergens 184 9.3.7 Application of nano barcodes in product authenticity 184 9.3.8 Nanomaterials for the inhibition of biofilm formation 185 9.4 Application of nanomaterials in medical biology and immunology 185 9.5 Application of nanomaterials in agricultural microbiology 186 9.6 Conclusion and future prospective 193 References 194 10. Smart nanomaterials in biosensing applications 207 Arvind Arya and Azamal Husen Abbreviations 207 10.1 Introduction 207 10.2 Smart nanomaterials and their applications by types 208 10.2.1 Types of smart nanomaterials 210 10.2.2 Applications of smart nanomaterials 210 10.2.3 Carbon allotrope-based nanomaterials 211 10.3 Application of smart nanomaterials in biosensing 215 10.3.1 Biomedical diagnosis 216 10.3.2 Food quality control 217 10.3.3 Pesticide detection and environment monitoring 217 10.4 Conclusion and prospects 224 References 224 11. Use of smart nanomaterials in food packaging 233 Nikita Singh, Smriti Gaur, Sonam Chawla, Sachidanand Singh and Azamal Husen Abbreviations 233 11.1 Introduction 233 11.2 Functions of packaging in food processing 235 11.3 Applications of nano-materials in food products packaging 235 11.3.1 Active packaging 235 11.3.2 Intelligent/smart packaging 236 11.4 Exposure and migration of nano-materials to food 238 11.5 Risks of nano-materials in food and food products packaging 239 11.6 Present public interest and regulation for nanomaterials in food packaging 240 11.7 Future perspectives 240 11.8 Conclusion 241 References 242 12. Nanosensors in food science and technology 247 Anweshan, Pranjal P. Das, Simons Dhara and Mihir K. Purkait 12.1 Introduction 247 12.2 A general overview of sensors and nanosensors 248 12.3 Nano-sensing techniques 249 12.3.1 Electrochemical sensors 249 12.3.2 Colorimetric sensors 250 12.3.3 Photoluminescence sensors 251 12.4 Fabrication methods of nanosensors 252 12.4.1 Electrodeposition and electropolymerization 252 12.4.2 Electrospinning and electrospraying 253 12.4.3 Lithography and fiber pulling 253 12.4.4 Green synthesis of nanosensors 254 12.5 Classification of sensory nanostructures 255 12.5.1 Nanoparticles 255 12.5.2 Carbon nanomaterials 256 12.5.3 Nanowires 257 12.6 Nanosensors for detection of spoilage in food 258 12.6.1 Detection of pathogens in edible items 258 12.6.2 Detection of toxins 258 12.6.3 Detection of gases and pH change to expose food spoilage 259 12.7 Nanosensors for detection of adulteration in food 259 12.7.1 Detection of additives 259 12.7.2 Detection of sugars and melamine 260 12.7.3 Detection of urea 261 12.8 Nanosensors for quality evaluation of beverages 261 12.8.1 Detection of nutrients and antioxidants 261 12.8.2 Detection of chemical contaminants and heavy metals 263 12.9 Nanosensors for smart food packaging 264 12.10 Challenges and future perspectives 265 12.11 Conclusion 266 References 267 13. Nanosensors for detection of volatile organic compounds 273 Tanmay Vyas, Kamakshi Parsai, Isha Dhingra and Abhijeet Joshi 13.1 Introduction 273 13.1.1 Environmental pollution 273 13.1.2 What are volatile compounds 274 13.1.3 Volatile compounds as pollutants 274 13.1.4 What are nanosensors? 277 13.2 Methods of detection of volatile organic compounds 277 13.2.1 Extraction techniques 278 13.2.2 Classical methods of detection 279 13.2.3 Sensing techniques for detection of volatile organic compounds 281 13.3 Materials used in nanosensors detecting volatile organic compounds 284 13.3.1 Conducting polymeric matrix 284 13.3.2 Carbon material matrix 285 13.3.3 Metal oxides 287 13.4 Nanosensor based sensing 288 13.5 Why nanosensor for detection 290 13.6 Applications of nano sensors-based detection 291 13.7 Conclusion 292 References 292 14. Nanomaterials in cosmetics and dermatology 297 Deepak Kulkarni, Santosh Shelke, Shubham Musale, Prabhakar Panzade, Karishma Sharma and Prabhanjan Giram 14.1 Introduction 297 14.2 Different materials are used for the fabrication of nanocarriers for cosmetics and dermatological use 299 14.2.1 Metallic materials 299 14.2.2 Carbon-based nano-materials 300 14.2.3 Polymers and lipids 300 14.3 Nanocarriers for cosmetics and dermatological use 301 14.3.1 Liposomes 302 14.3.2 Niosomes 302 14.3.3 Solid lipid nanoparticles 302 14.3.4 Nanostructured lipid carriers 303 14.3.5 Nanoemulsion 303 14.3.6 Nanocapsules and nanospheres 303 14.3.7 Nanocrystals 304 14.3.8 Nanoparticles 304 14.4 Characterization of nanomaterials 304 14.5 Functionalized nanomaterials for cosmetics and dermatological use 307 14.5.1 Functional nanomaterials for cosmetics 307 14.5.2 Functional nanomaterials for dermatology 308 14.6 Applications 309 14.6.1 Ultraviolet protecting agents 309 14.6.2 Phototherapy 309 14.6.3 Inflammatory diseases 310 14.6.4 Antiseptic and wound healing 310 14.6.5 Skin cancer therapy 311 14.6.6 Sebaceous gland diseases 311 14.6.7 Cosmetics 311 14.7 Toxicity assessment of nanomaterials for cosmetic and dermatological use (in vitro, in vivo, ex vivo) 313 14.7.1 In vitro 313 14.7.2 In vivo 314 14.7.3 Ex vivo 314 14.8 Cosmetic and dermatological marketed product 315 14.9 Patent scenario 316 14.10 Conclusion 317 Acknowledgment 317 References 317 15. Development of eco-friendly smart textiles from nanomaterials 325 Jayasankar Janeni and Nadeesh M. Adassooriya 15.1 Introduction 325 15.2 Eco-friendly nanomaterial 326 15.2.1 Carbon-based nanomaterials 326 15.2.2 Conductive polymer composites 327 15.2.3 Biopolymers 327 15.3 Applications of nanomaterial for smart textiles 328 15.3.1 Wearable sensors 328 15.3.2 Body signal monitoring 329 15.3.3 Energy harvesting 330 15.3.4 Nanocoatings for smart textiles 330 15.4 Conclusion and future trends 332 References 333 16. Energy storage properties of nanomaterials 337 Mukesh Sharma, Pranjal P. Das and Mihir K. Purkait 16.1 Introduction 337 16.1.1 Nanomaterials for anode 338 16.1.2 Nanomaterials for cathode 338 16.2 Nanomaterials for lithium-ion battery applications 339 16.3 Advances and phenomena enabled by nanomaterials in energy storage 341 16.4 Fabrication of nanomaterial-based energy storage devices 342 16.5 Surface chemistry and impurities in the microstructures for lithium-ion battery applications 342 16.5.1 Additive in organic liquid electrolyte 342 16.5.2 Surface modifications 343 16.6 Microstructure materials for supercapacitor applications 345 16.6.1 Electrochromism 345 16.6.2 Supercapacitor battery-hybrid device 345 16.7 Nanomaterials for hydrogen storage 346 16.8 Challenges and prospects 347 16.9 Conclusions 347 References 348 17. Smart nanomaterials based on metals and metal oxides for photocatalytic applications 351 Ahmed Kotb, Rabeea D. Abdel-Rahim, Ahmed S. Ali and Hassanien Gomaa 17.1 Introduction 351 17.2 Nanomaterial’s preparation approaches 352 17.2.1 Bottomup approaches 352 17.2.2 Topdown approaches 352 17.3 Characterization of smart nanomaterial-based catalysts 353 17.3.1 Structural characterization 353 17.3.2 Morphology characterization: electron microscopy 356 17.3.3 Dynamic light scattering 359 17.3.4 Optical characterization 359 17.3.5 BET surface area 361 17.3.6 Impedance spectroscopy 362 17.4 Applications of nanomaterial-based catalysts 363 17.4.1 Water purification 363 17.4.2 Biodiesel production 365 17.4.3 Photocatalysis 367 17.4.4 Photocatalytic fuel cell 368 17.5 Metal-based nanomaterials 371 17.5.1 Silver nanoparticles 373 17.5.2 Gold nanoparticles 375 17.5.3 Platinum nanoparticles and palladium nanoparticles 377 17.6 Metal oxide-based nanomaterials 378 17.6.1 TiO2 preparation and photocatalytic applications 378 17.6.2 ZnO preparation and photocatalytic applications 380 17.6.3 Iron oxides preparation and photocatalytic applications 381 17.6.4 Bi2O3 preparation and photocatalytic applications 384 17.7 Metal-TiO2 nanocomposite 385 17.7.1 Ag@TiO2 nanocomposite: preparation and photocatalytic applications 386 17.7.2 Au@TiO2 nanocomposite: preparation and photocatalytic applications 392 17.7.3 Pd@TiO2 nanocomposite: preparation and photocatalytic applications 393 17.7.4 Pt@TiO2 nanocomposite: preparation and photocatalytic applications 400 17.8 Conclusion and perspectives 404 References 404 18. Nanomaterials in the oil and gas industry 423 Subhash Nandlal Shah and Muili Feyisitan Fakoya 18.1 Introduction 423 18.2 Drilling and hydraulic fracturing fluids 424 18.3 Enhanced oil recovery (including nanoparticle transport, and emulsion and foam stability) 428 18.4 Oilwell cementing 433 18.5 Heavy oil viscosity 435 18.6 Formation fines migration 436 18.7 Other applications 437 18.7.1 Cement spacers 437 18.7.2 Corrosion inhibition 438 18.7.3 Logging operations 439 18.7.4 Hydrocarbon detection 439 18.7.5 Methane release from gas hydrates 439 18.7.6 Drag reduction in porous media 440 18.8 Conclusions 440 References 440 19. Use of nanomaterials in agricultural sectors 445 Gulamnabi Vanti, Shivakumar Belur and Azamal Husen Abbreviations 445 19.1 Introduction 446 19.1.1 Phyto-nanotechnology 447 19.1.2 Nanobiosensors in agroecosystems 448 19.1.3 Nanomaterials in food processing and packaging 457 19.1.4 Nanoparticles in plant disease management 458 19.1.5 Nano fertilizers 459 19.2 Conclusion 460 References 460 20. Use of nanomaterials in the forest industry 469 Paras Porwal, Hamid R. Taghiyari and Azamal Husen 20.1 Introduction 469 20.2 Application of nanotechnology for woodbased sectors 470 20.2.1 Nanotechnology in wood preservation and modification 470 20.3 Wood composites 471 20.4 Wood coatings 474 20.5 Improving wood durability 475 20.6 Improving water absorption 475 20.7 Improving mechanical property 476 20.8 Improving UV absorption 476 20.9 Improving fire retardancy 477 20.10 Pulp and paper industry 478 20.11 Reinforcing agents 479 20.12 Coating nanomaterials 479 20.13 Retention agents 479 20.14 Fillers 480 20.15 Sizing agents 480 20.16 Nanocellulose potentials in the development of sensor devices 480 20.17 Nanotoxicity: a safety concern 481 20.18 Conclusion 481 References 482 21. Management of wastewater and other environmental issues using smart nanomaterials 489 Mohammad Asif Raja, Md Asad Ahmad, Md Daniyal and Azamal Husen 21.1 Introduction 489 21.2 Wastewater and their sources 491 21.3 Other environmental issues associated with wastewater 491 21.4 Introduction of nanotechnology in wastewater treatment 493 21.4.1 Caron-based nanomaterials 495 21.4.2 Carbon nanotubes 495 21.4.3 Graphene-based nanomaterials 496 21.4.4 Graphitic carbon nitrate (g-C3N4) 498 21.4.5 Silica-based nanomaterials 498 21.4.6 Polymer-based nanomaterials 498 21.5 Conclusion 499 References 500 Further reading 503 22. 3D and 4D nanocomposites 505 Kalyan Vydiam and Sudip Mukherjee Abbreviations 505 22.1 Introduction 505 22.2 Types of nanocomposites 508 22.2.1 Ceramic nanocomposites 508 22.2.2 Polymer nanocomposites 509 22.2.3 Metallic nanocomposites 509 22.3 Characterization techniques 510 22.3.1 X-ray diffraction 510 22.3.2 Thermogravimetric analysis 510 22.3.3 Transmission electron microscopy 511 22.3.4 Fourier transform infrared spectroscopy 511 22.3.5 Four-point probe 512 22.4 Applications 512 22.4.1 Ceramic nanocomposites 512 22.4.2 Polymeric nanocomposites 513 22.4.3 Metallic nanocomposites 515 22.5 Conclusions 517 Acknowledgment 518 References 518 23. Nanodimensional materials: an approach toward the biogenic synthesis 523 Tahmeena Khan, Qazi Inamur Rahman, Saman Raza, Saima Zehra, Naseem Ahmad and Azamal Husen 23.1 Introduction 523 23.2 Biogenic synthesis of nanoparticles 524 23.3 Mechanism of the synthesis of nanoparticles 526 23.4 Factors affecting the synthesis of plant-based nanoparticles 526 23.4.1 pH-dependent effect 527 23.4.2 Role of temperature 527
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐