图书简介
This book takes a deep dive into several key linear algebra subjects as they apply to data analytics and data mining. The book offers a case study approach where each case will be grounded in a real-world application. This text is meant to be used for a second course in applications of Linear Algebra to Data Analytics, with a supplemental chapter on Decision Trees and their applications in regression analysis. The text can be considered in two different but overlapping general data analytics categories, clustering and interpolation. Knowledge of mathematical techniques related to data analytics, and exposure to interpretation of results within a data analytics context, are particularly valuable for students studying undergraduate mathematics. Each chapter of this text takes the reader through several relevant and case studies using real world data. All data sets, as well as Python and R syntax are provided to the reader through links to Github documentation. Following each chapter is a short exercise set in which students are encouraged to use technology to apply their expanding knowledge of linear algebra as it is applied to data analytics. A basic knowledge of the concepts in a first Linear Algebra course are assumed; however, an overview of key concepts are presented in the Introduction and as needed throughout the text.
Acknowledgments
Introduction
1 Graph Theory
1.1 Basic Terminology
1.2 The Power of the Adjacency Matrix
1.3 Eigenvalues and Eigenvectors as Key Players
1.4 CASE STUDY: Applications in Sport Ranking
1.5 CASE STUDY: Gerrymandering
1.6 Exercises
2. Stochastic Processes
2.1 Markov Chain Basics
2.2 Hidden Markov Models
2.2.1 The Likelihood Problem
2.2.2 The Decoding Problem
2.2.3 The Learning Problem
2.3 CASE STUDY: Spread of Infectious Disease
2.4 CASE STUDY: Text Analysis and Autocorrect
2.5 CASE STUDY: Tweets and Time Series
2.6 Exercises
3. SVD and PCA
3.1 Vector and Inner Product Spaces
3.2 Singular Values
3.3 Singular Value Decomposition
3.4 Compression of Data Using Principal Component Analysis (PCA)
3.5 PCA, Covariance, and Correlation
3.6 Linear Discriminant Analysis
3.7 CASE STUDY: Digital Humanities
3.8 CASE STUDY: Facial Recognition Using PCA and LDA
3.9 Exercises
4. Interpolation
4.1 Lagrange Interpolation
4.2 Orthogonal Families of Polynomials
4.3 Newton’s Divided Difference
4.3.1 Newton’s interpolation via divided difference
4.3.2 Newton’s interpolation via the Vandermonde matrix
4.4 Chebyshev interpolation
4.5 Hermite interpolation
4.6 Least Squares Regression
4.7 CASE STUDY : Chebyshev Polynomials and Cryptography
4.8 CASE STUDY: Racial Disparities in Marijuana Arrests
4.9 CASE STUDY : Interpolation in Higher Education Data
4.10 Exercises
5. Optimization and Learning Techniques for Regression
5.1 Basics of Probability Theory
5.2 Introduction to Matrix Calculus
5.2.1 Matrix Differentiation
5.2.2 Matrix Integration
5.3 Maximum Likeli
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐