Integrable Many-Particle Systems

可积多粒子系统

基础力学

原   价:
792.5
售   价:
634.00
优惠
平台大促 低至8折优惠
发货周期:国外库房发货,通常付款后3-5周到货!
作      者
出  版 社
出版时间
2023年02月08日
装      帧
精装
ISBN
9781800613812
复制
页      码
200 pp
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 50 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
It is commonly known that three or more particles interacting via a two-body potential is an intractable problem. However, similar systems confined to one dimension yield exactly solvable equations, which have seeded widely pursued studies of one-dimensional n-body problems. The interest in these investigations is justified by their rich and quantitative insights into real-world classical and quantum problems, birthing a field that is the subject of this book. Spanning four bulk chapters, this book is written with the hope that readers come to appreciate the beauty of the mathematical results concerning the models of many-particle systems, such as the interaction between light particles and infinitely massive particles, as well as interacting quasiparticles. As the book discusses several unsolved problems in the subject, it functions as an insightful resource for researchers working in this branch of mathematical physics.In Chapter 1, the author first introduces readers to interesting problems in mathematical physics, with the prime objective of finding integrals of motion for classical many-particle systems as well as the exact solutions of the corresponding equations of motions. For these studied systems, their quantum mechanical analogue is then developed in Chapter 2. In Chapter 3, the book focuses on a quintessential problem in the quantum theory of magnetism: namely, to find all integrable one-dimensional systems involving quasiparticles of interacting one-half spins. Readers will study the integrable periodic chains of interacting one-half spins and discover the integrals of motion for such systems, as well as the eigenvectors of their corresponding Hamiltonians. In the last chapter, readers will study about integrable systems of quantum particles, with spin and mutual interactions involving rational, trigonometric, or elliptic potentials.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个