图书简介
This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.
Contributing Authors: AI for Science (Alok Choudhary, Geoffrey Fox, and Tony Hey); Overview of the Book; Setting the Scene: Data Driven Science in the Era of AI: From Patterns to Practice (Alex Szalay); AI in the Broader Context of Data Science(Rafael Alvarado and Philip Bourne); AlphaFold — The End of the Protein Folding Problem or the Start of Something Bigger? (David T Jones and Janet M Thornton); Applications of AI in Astronomy (S G Djorgovski, A A Mahabal, M J Graham, K Polsterer, and A Krone-Martins); Machine Learning for Complex Instrument Design and Optimization (Barry C Barish, Jonathan Richardson, Evangelos Papalexakis, and Rutuja Gurav); Artificial Intelligence (AI) and Machine Learning (ML) at Experimental Facilities (JA Sethian, JJ Donatelli, A Hexemer, MM Noack, DM Pelt, DM Ushizima, and PH Zwart); The First Exascale Supercomputer: Accelerating AI-for-Science and Beyond (Satoshi Matsuoka, Mohamed Wahib, Aleksandr Drozd, and Kento Sato); Benchmarking for AI for Science (Jeyan Thiyagalingam, Mallikarjun Shankar, Geoffrey Fox, and Tony Hey); Exploring Application Domains: Astronomy and Cosmology: Radio Astronomy and the Square Kilometre Array (Anna Scaife); AI for Astronomy: The Rise of the Machines (Andy Connolly); Climate Change: AI and Net Zero (Alberto Arribas, Karin Strauss, Sharon Gillett, Amy Luers, Trevor Dhu, Lucas Joppa, Roy Zimmermann, and Vanessa Miller); AI for Climate Science (Philip Stier); Energy: Accelerating Fusion Energy with AI (Steve Cowley, Dan Boyer, and Michael Churchill); Artificial Intelligence for a Resilient and Flexible Power Grid (Olufemi A Omitaomu, Jin Dong, and Teja Kuruganti); Environmental Science: AI and Machine Learning in Observing Earth from Space (Jeff Dozier); Artificial Intelligence in Plant and Agricultural Research (Sabina Leonelli and Hugh F Williamson); Health: AI and Pathology: Steering Treatment and Predicting Outcomes (Rajarsi Gupta, Jakub Kaczmarzyk, Soma Kobayashi, Tahsin Kurc, and Joel Saltz); The Role of Artificial Intelligence in Epidemiological Modeling (Madhav V Marathe et al.); Life Sciences: Big AI: Blending Big Data With Big Theory to Build Virtual Humans (Peter Coveney and Roger Highfield); A Roadmap for Defining Machine Learning Standards in the Life Sciences (Fotis Psomopoulos, Carole Goble, Leyla Jael Castro, Jennifer Harrow, and Silvio C E Tosatto); Materials Science and Engineering: Artificial Intelligence for Materials (Debra J Audus, Kamal Choudhary, Brian L DeCost, A Gilad Kusne, Francesca Tavazza, and James A Warren); Artificial Intelligence for Accelerating Materials Discovery (Ankit Agrawal and Alok Choudhary); Particle Physics: Experimental Particle Physics and Artificial Intelligence (David Rousseau); AI and Theoretical Particle Physics (Rajan Gupta, Tanmoy Bhattacharya, and Boram Yoon); The Ecosystem of AI for Science: Schemaorg for Scientific Data (Alasdair Gray, Leyla Castro, Nick Juty and Carole Goble); AI-enabled HPC Workflows (Shantenu Jha, Vincent Pascuzzi, and Matteo Turilli); AI for Scientific Visualization (Han-Wei Shen and Chris Johnson); Uncertainty Quantification in AI for Science (Tanmoy Bhattacharya, Christina Garcia Cardona, and Jamal Mohd-Yusof); AI for Next Generation Global Network-Integrated Systems and Testbeds (Mariam Kiran and Harvey Newman); AI for Optimal Experimental Design and Decision Making (Francis J Alexander, Kristofer-Roy Reyes, Lav R Varshney, and Byung-Jun Yoon); FAIR: Making Data AI-Ready (Susanna-Assunta Sansone, Lee Harland, Philippe Rocca-Serra, and Mark Wilkinson); Perspectives on AI for Science: Large Language Models for Science (Austin Clyde, Arvind Ramanathan, and Rick Stevens); AI for Autonomous Vehicles (Tom St John and Vijay Janapa Reddi); The Automated AI-Drive Future of Scientific Discovery (Ross King and Hector Zenil); Towards Reflection Competencies in Intelligent Systems for Science (Yolanda Gil); The Interface of Machine Learning and Causal Inference (Mohammad Taha Bahadori and David Heckerman); Endpiece: AI Tools and Concepts: Survey of Deep Learning Methods; AI Methods Discussed in Chapters;
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐