图书简介
Develops the theory of jet single-time Lagrange geometry and presents modern-day applications Jet Single-Time Lagrange Geometry and Its Applications guides readers through the advantages of jet single-time Lagrange geometry for geometrical modeling. With
Preface. Part I. The Jet Single-Time Lagrange Geometry 1. Jet geometrical objects depending on a relativistic time 3 1.1 d-Tensors on the 1-jet space J1(R, M) 4 1.2 Relativistic time-dependent semisprays. Harmonic curves 6 1.3 Jet nonlinear connection. Adapted bases 11 1.4 Relativistic time-dependent and jet nonlinear connections 16 2. Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry 19 2.1 The adapted components of jet GAMMA-linear connections 19 2.2 Local torsion and curvature d-tensors 24 2.3 Local Ricci identities and nonmetrical deflection d-tensors 30 3. Local Bianchi identities in the relativistic time-dependent Lagrange geometry 33 3.1 The adapted components of h-normal GAMMA-linear connections 33 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type 37 4. The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces 43 4.1 Relativistic time-dependent Lagrange spaces 44 4.2 The canonical nonlinear connection 45 4.3 The Cartan canonical metrical linear connection 48 4.4 Relativistic time-dependent Lagrangian electromagnetism 50 4.5 Jet relativistic time-dependent Lagrangian gravitational theory 51 5. The jet single-time electrodynamics 57 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics EDLn/1 58 5.2 Geometrical Maxwell equations of EDLn/1 61 5.3 Geometrical Einstein equations on EDLn/1 62 6. Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moor metric of order three 65 6.1 Preliminary notations and formulas 66 6.2 The rheonomic Berwald-Moor metric of order three 67 6.3 Cartan canonical linear connection. D-Torsions and d-curvatures 69 6.4 Geometrical field theories produced by the rheonomic Berwald-Moor metric of order three 72 7. Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moor metric of order four 77 7.1 Preliminary notations and formulas 78 7.2 The rheonomic Berwald-Moor metric of order four 79 7.3 Cartan canonical linear connection. D-Torsions and d-curvatures 81 7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moor metric of order four 84 7.5 Some physical remarks and comments 87 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moor metric of order four 89 8. The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four 99 8.1 Preliminary notations and formulas 100 8.2 The rheonomic Chernov metric of order four 101 8.3 Cartan canonical linear connection. d-torsions and d-curvatures 103 8.4 Applications of the rheonomic Chernov metric of order four 105 9. Jet Finslerian geometry of the conformal Minkowski metric 109 9.1 Introduction 109 9.2 The canonical nonlinear connection of the model 111 9.3 Cartan canonical linear connection, d-torsions and d-curvatures 103 9.4 Geometrical field model produced by the jet conformal Minkowski metric 115 Part II. Applications of the Jet Single-Time Lagrange Geometry 10. Geometrical objects produced by a nonlinear ODEs system of first order and a pair of Riemannian metrics 121 10.1 Historical aspects 121 10.2 Solutions of ODEs systems of order one as harmonic curves on 1-jet spaces. Canonical nonlinear connections 123 10.3 from first order ODEs systems and Riemannian metrics to geometrical objects on 1-jet spaces 127 10.4 Geometrical objects produced on 1-jet spaces by first order ODEs systems and pairs of Euclidian metrics. Jet Yang-Mills energy 129 11. Jet single-time Lagrange geometry applied to the Lorenz atmospheric ODEs system 141 11.1 Jet Riemann-Lagrange geometry produced by the Lorenz simplified model of Rossby gravity wave interaction 135 11.2 Yang-Mills energetic hypersurfaces of constant level produced by the Lorenz atmospheric ODEs system 138 12. Jet single-time Lagrange geometry applied to evolution ODEs systems from Economy 141 12.1 Jet Riemann-Lagrange geometry for Kaldor nonlinear cyclical model in business 141 12.2 Jet Riemann-Lagrange geometry for Tobin-Benhabib-Miyao economic evolution model 144 13. Some evolution equations from Theoretical Biology and their single-time Lagrange geometrization on 1-jet spaces 147 13.1 Jet Riemann-Lagrange geometry for a cancer cell population model in biology 148 13.2 The jet Riemann-Lagrange geometry of the infection by human immunodeficiency virus (HIV-1) evolution model 151 13.3 From calcium oscillations ODEs systems to jet Yang-Mills energies 154 14. Jet geometrical objects produced by linear ODEs systems and higher order ODEs 169 14.1 Jet Riemann-Lagrange geometry produced by a non-homogenous linear ODEs system or order one 169 14.2 Jet Riemann-Lagrange geometry produced by a higher order ODE 172 14.3 Riemann-Lagrange geometry produced by a non-homogenous linear ODE of higher order 175 15. Jet single-time geometrical extension of the KCC-invariants 179 References 185 Index 191
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐