图书简介
Positioned for students (and parents) who just want the key concepts and a few examples -- without the review, ramp-up, and anecdotal content -- The Essentials For Dummies series is a perfect solution for exam-cramming, homework help, and reference.
Introduction 1 About This Book 1 Conventions Used in This Book 2 Foolish Assumptions 2 Icons Used in This Book 3 Where to Go from Here 3 Chapter 1: Calculus: No Big Deal 5 So What is Calculus Already? 5 Real-World Examples of Calculus 7 Differentiation 8 Integration 9 Why Calculus Works 11 Limits: Math microscopes 11 What happens when you zoom in 12 Chapter 2: Limits and Continuity 15 Taking it to the Limit 15 Three functions with one limit 15 One-sided limits 17 Limits and vertical asymptotes 18 Limits and horizontal asymptotes 18 Instantaneous speed 19 Limits and Continuity 21 The hole exception 22 Chapter 3: Evaluating Limits 25 Easy Limits 25 Limits to memorize 25 Plug-and-chug limits 26 \"Real\" Limit Problems 26 Factoring 27 Conjugate multiplication 27 Miscellaneous algebra 28 Limits at Infinity 29 Horizontal asymptotes 30 Solving limits at infinity 31 Chapter 4: Differentiation Orientation 33 The Derivative: It’s Just Slope 34 The slope of a line 35 The derivative of a line 36 The Derivative: It’s Just a Rate 36 Calculus on the playground 36 The rate-slope connection 38 The Derivative of a Curve 39 The Difference Quotient 40 Average and Instantaneous Rate 46 Three Cases Where the Derivative Does Not Exist 47 Chapter 5: Differentiation Rules 49 Basic Differentiation Rules 49 The constant rule 49 The power rule 49 The constant multiple rule 50 The sum and difference rules 51 Differentiating trig functions 52 Exponential and logarithmic functions 52 Derivative Rules for Experts 53 The product and quotient rules 53 The chain rule 54 Differentiating Implicitly 59 Chapter 6: Differentiation and the Shape of Curves 61 A Calculus Road Trip 61 Local Extrema 63 Finding the critical numbers 63 The First Derivative Test 65 The Second Derivative Test 66 Finding Absolute Extrema on a Closed Interval 69 Finding Absolute Extrema over a Function’s Entire Domain 71 Concavity and Inflection Points 73 Graphs of Derivatives 75 The Mean Value Theorem 78 Chapter 7: Differentiation Problems 81 Optimization Problems 81 The maximum area of a corral 81 Position, Velocity, and Acceleration 83 Velocity versus speed 84 Maximum and minimum height 86 Velocity and displacement 87 Speed and distance travelled 88 Acceleration 89 Tying it all together 90 Related Rates 91 A calculus crossroads 91 Filling up a trough 94 Linear Approximation 97 Chapter 8: Introduction to Integration 101 Integration: Just Fancy Addition 101 Finding the Area under a Curve 103 Dealing with negative area 105 Approximating Area 105 Approximating area with left sums 105 Approximating area with right sums 108 Approximating area with midpoint sums 110 Summation Notation 112 Summing up the basics 112 Writing Riemann sums with sigma notation 113 Finding Exact Area with the Definite Integral 116 Chapter 9: Integration: Backwards Differentiation 119 Antidifferentiation: Reverse Differentiation 119 The Annoying Area Function 121 The Fundamental Theorem 124 Fundamental Theorem: Take Two 126 Antiderivatives: Basic Techniques 128 Reverse rules 128 Guess and check 130 Substitution 132 Chapter 10: Integration for Experts 137 Integration by Parts 137 Picking your u 139 Tricky Trig Integrals 141 Sines and cosines 141 Secants and tangents 144 Cosecants and cotangents 147 Trigonometric Substitution 147 Case 1: Tangents 148 Case 2: Sines 150 Case 3: Secants 151 Partial Fractions 152 Case 1: The denominator contains only linear factors 152 Case 2: The denominator contains unfactorable quadratic factors 153 Case 3: The denominator contains repeated factors 155 Equating coefficients 155 Chapter 11: Using the Integral to Solve Problems 157 The Mean Value Theorem for Integrals and Average Value 158 The Area between Two Curves 160 Volumes of Weird Solids 162 The meat-slicer method 162 The disk method 163 The washer method 165 The matryoshka doll method 166 Arc Length 168 Improper Integrals 171 Improper integrals with vertical asymptotes 171 Improper integrals with infinite limits of integration 173 Chapter 12: Eight Things to Remember 175 a2- b2 = (a - b)(a + b) 175 0/5 = 0 But 5/0 is Undefined 175 SohCahToa 175 Trig Values to Know 176 sin2? + cos2? = 1 176 The Product Rule 176 The Quotient Rule 176 Your Sunglasses 176 Index 177
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐